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Forward Elastic Scattering at High Energy in an SU(3) Regge-Pole Model*
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The total-cross-section data on 7i-+p, E~p, E+n, pp, pp, pn, and pn for laboratory momenta in the range
5 to 20 BeV/c are analyzed in terms of a meson-exchange model. The dynamics of the theoretical model for
the forward scattering amplitude are provided by the Regge-pole amplitudes of the contributing exchanges;
the total cross sections are obtained by the optical theorem. The allowed neutral, zero-strangeness meson
exchanges are classified as members of established SU{3) nonet or singlet multiplets. Certain linear com-
binations of the total cross sections are used in the analysis in order to separate the contributions of diferent
SU(3) multiplets according to signature under charge conjugation C. The odd-C exchanges are associated
with the members +0{760),p(1020), ou {783)j of the vector-meson nonet. The unitary-singlet Pomeranchuk
Regge pole (P) and the Regge exchanges corresponding to the pA&(1310), sp(1525), f0(1250)g members of
the tensor nonet comprise the even-C exchanges. The residues of the Regge poles are related by SU(3) sym-
metry. The model is consistent with the experimental total cross sections. A statistical fit to the data yields
information on f/d ratios, Regge-pole residues, and trajectory intercepts at zero-momentum transfer. These
parameters are in turn used to predict the real parts of the forward elastic-scattering amplitudes.

I. INTRODUCTION

HE observed forward peaking of high-energy
elastic-scattering processes 3+8—+ 3+8 is

suggestive of meson exchange in the 3 channel: A+A ~
II+8 (Fig. 1).A natural framework for this dynamical

picture is provided by the Regge hypothesis in the pole
approximation. ' Incorporation of unitary-symmetry
predictions for the Regge-pole residues yields a tractable
model for a phenomenological analysis of high-energy
elastic-scattering amplitudes. A critical analysis of the
model becomes possible by restricting the study to total
cross sections which are linearly related by the optical
theorem to the imaginary part of the forward elastic
amplitudes. The simpli6cation which results at the
forward direction is due to the following factors: (i)
only the helicity non-Rip s-channel amplitudes con-
tribute, (ii) no assumption is required regarding the
unknown momentum-transfer dependence of the
residues and trajectories of the Regge poles, (iii) no
interference terms arise between amplitudes of diferent
trajectories as contrasted with the complex situation for
the elastic diBerential cross sections, (ip) invariance
principles can be used to isolate the contributions of
trajectories with different isotopic-spin and charge-
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' Some recent applications of the Regge-pole hypothesis to high-
energy phenomena and sources of earlier literature can be found in
Refs. 2—4 below.
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807 (1965); 14, 502 (1965).

«T. Binford and B. Desai, Phys. Rev. 138, 81167 (1965); B.
Desai, ibid. 138, 81174 (1965).

48. M. Udgaonkar, in Strong Interactions and High Energy
Physics, edited by R. G. Moorhouse (Plenum Press, Inc. , New
York, 1963),p. 223; Phys. Rev. Letters 8, 142 (1962);A. Pignotti,
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' R. K. Logan, Phys. Rev. Letters 14, 414 (1965).

conjugation signature, and (p) symmetry-breaking
effects are less critical than for the diBerential cross
sections (e.g. , a symmetry breakdown of 15% in the
amplitude leads to 30% deviation in the diiferential
cross section).

The contributing Regge meson exchanges are usually
expected to correspond to physically observed particles.
The experimentally observed mesons and meson
resonances appear to belong to octet, singlet, or nonet
representations of SU(3). In particular the pseudoscalar
mesons L7r(140), E(495), q(550), X'(960)j are satis-
factorily classi6ed as an octet and singlet. The vector
mesons Q(760), E*(890), P(1020), pp(783) j and the
tensor mesons LA &(1310),E~(1430), sp(1525), fp(1250)7
exhibit nonet structure. ' ' The identification of these
meson states with SU(3) representations is based on
mass formulas and decay rates. Although a few other
enhancements have been identified such as LAq(1080),
B(1220),E*(1175)j, they may prove to be of kinematic
origin. Further arguments for not including these
mesons as exchanges is given in Sec. II on the basis of
their spin-parity assignments. In addition to the
trajectories associated with the neutral members of the
established nonet multiplets, we take into account the
existence of a vacuum trajectory with maximal strength

t channel
I'IG. 1. Meson-

exchange model for
the elastic-scattering
amplitude at high
energy.

s channel

' S. Okubo, Phys. Letters 5, 165 (1963).' S. L. Glashow and R. H. Socolow, Phys. Rev. Letters 15, 329
(1965); R. Delbourgo, M. A. Rashid, and J. Strathdee, ibid. 14,
719 (1965).
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(the Pomeranchuk trajectory) to be treated as a unitary
singlet. This trajectory is required to explain the
constancy of total cross sections at ultrahigh energy.
(Cosmic-ray data' show no great change in total cross
sections up to 10' BeV). Manifestations of this tra-
jectory as an I=O, J =2~ meson is not absolutely
essential since the trajectory may have a small slope at
t=0. We take advantage of the SU(3)-representation
classifications of the Regge poles to relate the intra-
multiplet residues. The trajectories within a particular
multiplet are allowed to be nondegenerate in analogy
with broken masses for the physical mesons.

In Sec. II an explicit statement of the model is given
and individual Regge-pole amplitudes are isolated by
the use of invariance principles. The contributions to
the total cross sections of trajectories with odd (even)
charge conjugation are analyzed in Sec. III (IV).
Finally, in Sec. V the parameters of the fits are used to
predict the real parts of the forward-scattering
amplitudes.

II. STATEMENT OF MODEL

The phenomenological study of total cross sections
at high energy is greatly faciliated by considering sums
and differences of particle and antiparticle total cross
sections:

A~a =op(A—B) og(A—B),
Z„e=o,(AB)+o,(AB) .

With these combinations the exchanges of neutral,
zero-strangeness mesons in the t channel are separated
according to sign under charge conjugation C. Specifi-
cally, only exchanged mesons with odd C can contribute
to the A~~, only even-C exchanged mesons contribute
to the Z~g. Further simplification results through in-
variance under isotopic-spin rotations by isolation of
meson exchanges according to isotopic spin I. The
neutral-meson exchange contributions of definite C
and I are given in terms of the 6's and Z's by the
following combinations:

(C—,I=1)' Ax'„—Ax'

~PP—~P

(C+, I= 1)~

&X'P—&Z'

.&PP—&P.

~K p+~K n

(C—,I=0)
~PP+~P

(C+ I=O) Zx' +Zx'

&PP+~P

For meson-nucleon scattering (Ass~ and Zsr~) the
exchanged mesons must have natural parity P= (—1)s
and charge conjugation C=I' because of the coupling
to the external pseudoscalar meson pair. (The cor-
responding Regge pole must have signature 7 =P).
For antinucleon-nucleon and nucleon-nucleon scattering
it can again be shown that 7 =I'= C for the trajectories
which make contributions to the spin averaged total
cross sections. ' Thus only mesons with J~=i and
odd C can be exchanged in the h~~ and only mesons
with J"=0+, 2+ and even C can contribute to the
Z~o. For the dye the vector mesons (po,P,au) are the
only observed particles with the required quantum
numbers. For the Z~e the members (A2, so,fo) of the
tensor nonet can contribute. We include in addition the
unitary singlet Pomeranchuk trajectory (P) with even
C. Scalar exchanges (0+, even C) should be negligible
even if such particles are discovered because of their
negative trajectory intercepts at t=0. On the basis of
the above reasoning we conclude that the same meson
exchanges, namely L(p', P,~), (A2, so,fp), (P)j, should

D. H. Perkins, in Proceedings of the International Conference
on Theoretical Aspects of Very High Energy Phenomena (CERN,
Geneva, 1961), p. 99.' A. Ahmadzadeh and E.Leader, Phys. Rev. 134, B1058 (1964);
W. G. %agner, Phys. Rev. Letters 10, 202 (1963); D. H. Sharp
and %. G. %'agner, Phys. Rev. 131, 2226 (1963).

account for all the quantities &~&, ~~N, &~&, ~». We
explore this possibility in the following sections.

The dynamics of this model for the forward-scattering
amplitude are described by Regge poles in the f channel
as illustrated in Fig. i. The asymptotic spin-averaged
forward amplitude due to the Regge pole of a vector
meson V may be written in natural units h=c= 1 as

y~vyav I'(nv+2) 1—e-'-v
fgov(s, 0) =

4ms'" I'(nv+1) sin7rnv

~&2 ~B2- ay'

(3)

where we have used the factorization theorem" for
the dimensionless residue y~y~. Here s is the square of
the total center-of-mass energy. o,~ is the t=0 intercept
of the vector-meson trajectory. sy is an arbitrary scaling
factor. The sign of the residue is assumed to be the sign
at the physical vector-meson polp t =esp ."The forward

"M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962); V. N.
Gribov and I. Ya. Pomeranchuk, ibid. 8, 343, 412 (1962); J. M.
Charap and E. J. Squires, Phys. Rev. 127, 1387 {1962).

» Y. Hara, Progr. Theoret. Phys. (Kyoto) 28, 1048 (1962};S.D.
Drell, in Proceedings of the 1P6Z Annla/ International Conference
on High Energy Ngclear Physics at CERN, edited by J. Prentki
{CERN, Geneva, 1962), p. 897.
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rather than with the masses of the external mesons. '
This association is required to reproduce the SU(3) sum
rule for the A~~."We take a common value for the
scaling factors associated with the exchanges of the
members of the SD(3) multiplet, e.g. , s,=s„=s~=—sv.
The actual numerical values of the multiplet scaling
factors sp, s&, s& are relevant only for a comparison of
the residues at t=0 with the coupling constants at the
physical poles. Such an extrapolation involves a knowl-

edge of the t dependence of the residues which is
beyond the scope of our phenomenological analysis.
Consequently, we adopt the common value s&=sz
=sa= (1 BeV)' for our analysis.

III. TOTAL-CROSS-SECTION
DIFFERENCES (AAa)

-0.5—

amplitude due to a tensor Regge pole has the form

fAa'(s, 0) =—VArVar I'(nr+o)
m'l'O. "

4ss'" I'(nr+1)

j+e '~~~ s—&~2—jI/1~2-

X
sine ng sp

(4)

The factor o.p is extracted from the residue in order to
avoid a ghost state at az ——0. The amplitude for the
Pomeranchuk Regge pole is obtained from Eq. (4)
by the replacement T~ I' and with a~=1. The
resultant forward spin-averaged amplitude fAa(s, 0) is
given by a sum over the Regge amplitudes. By the
optical theorem the total cross section is related to the
imaginary part of the forward-scattering amplitude by

l I I I"3 "2 -I 08
I'IG. 2. Plot of the most likely solutions for the vector exchange

paramet«»~v&w v, &uv/pxv, —f/d, ap, a~ versus the parameter
P I cf. Eqs. (13)—{17)j. Representative errors are given for each
parameter. The values of x~ for the Gts are indicated on the right
ordinate.

According to the arguments of Secs. I and II, Regge
exchanges associated with the (po, p, a&) vector mesons
should provide a quantitative explanation of the total-
cross-section differences A~N and ANa. SU(3) sym-
metry will now be utilized to relate the residues as-
sociated with the vector meson exchanges, thereby re-
ducing the number of free parameters in the statistical
fit.

The vector mesons [p,E~,&,oo] are satisfactorily
classiied as an SU(3) nonet which we designate by the
3&(3 matrix V. The physical particles (p,oo) are related
to the octet and singlet representation members

(4o,~i) by
g = (Vapo —(og)/v3,

co= (Po+V2cog)/VS.

This identification forbids the P —+ p+x decay mode.
The relevant diagonal elements of V are given by

Vz'= (po+n)/V2,

Voo ( po+„)/v2
P' 3

The usual 3)&3 matrices for the pseudoscalar-meson
octet and the baryon octet" will be denoted by N and
B, respectively. Then the general SU(3)-invariant
interaction Lagrangian for the residues at t=0 of the
vector-meson Regge poles has the form:

L vsrVs2rp (MArv[V, 3Ej) ~ (9)

Lvaa=42pav(f(B[V, Bj)+d(B{V,B))
+P(V)(BB)), (10)

where ( ) denotes trace over SU(3) indices. We adopt
the conventional normalization f+d=1. The residues
of the vector-meson Regge poles can be expressed in
terms of the SU(3) parameters of Eqs. (9) and (10):

a((AB) = [47r/qAa(s) j Im fAa(s, 0), (5)

2 Y~p YKp YRdi/& 'YK(u Yssv q (11)

where qAa(s) is the center-of-mass momentum. For
later economy of notation we define

& / 1(nv+ )-s 3fA 3IIao-av
+Ava(s) =

s' 'qAa(s) I'(nv+1) sv
(6)

I'(nr+-', ) s cvA' Ma'— —
RAra(s) = nl

S' 'qAa(S) I'(nr+1) Sr

In this model the scaling factors sv, s~, s~ are to be
associated with the range of the t-channel exchange

'~ V. Barger and M. Rubin, Phys. Rev. 140, 31365 (1965);
V. Barger and M. Olsson, Phys. Rev. Letters 15, 930 {1965)."B.Sakita and K. C. Wali, Phys. Rev. 139, 31355 (1965).
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V„=(f+d)V~v,
y,p='/2(f d—p—)yxv, (12)

y„=(f+d+2P)y~v

Combining the results of Eqs. (3), (5), (11), and (12),
we obtain for the h~N and h~~.

2~~+y= 2 r Mv'rNvR~py(s) y

,'[&Jr'—, ~x' j=vssvVn vRx„(s),

(13)

(14)

(15)kL~nn ~n.j=VNv'Rn. ~(s)

,' $D&+„+&&+—„]= 2(2f 1 P—)p ss—vr NvRxpy(s)

+ (1+2p)ysrvy~vRx„, (s), (16)

+& ]=2(2f—1—P)'yx v'R„„(s)
+(1+2P)arNv2R»(s). (17)

An immediate prediction of Eqs. (13) and (14) is

[ax'~ Ax' j/6 +s—=[V ~(s)/IVxs, (s)j
X/(s 3E»' M— ')/(s—3f '——M„')7 ~

Rx„(s)//R. —p, (s), (18)

~Z'2 =~Z n+~ (19)

which is the Regge-pole form of the SU(3) sum rule, "

5-
E

4-
Cl

2 4 6 8 IO I2 I4 I6 IS 20
I I t I I I I I I I

PI b{BeV/c)

25- T

20-

I5 ~

lo ~

18to 5l P

m —251+ fg p

(21)

If this type of ansatz can be extended to nonet cou-
plings, then we might expect that P=O in Eq. (10).
Nevertheless, we make no such restriction on the value
of P in our analysis.

From Eqs. (13)—(17) the hsr~ and AN~ are deter-
mined in terms of six independent parameters: P, y~~,
&Nv, f/d, a„a&, (a„=a,). In the statistical analysis
of the experimental data we 6x the value of P and

derived by Barger and Rubin in the exact-symmetry
limit of degenerate masses, m =vs~. The comparison
of Eq. (18) with experiment is discussed at the end of
this section.

The trajectories associated with the vector-meson
nonet might reasonably be expected to be approxi-
mately parallel. Furthermore, each of the av(s) must
intersect the value J= 1 at t =m~2. Since m„~m p

and mq&m„ the implication for the t=0 intercepts
is o. Qp and clp&ep As a working hypothesis we take
n„=o.p and allow ap and n& as free parameters. Neverthe-
less, we 6nd that our solutions are quite insensitive to
the precise value of a„ in the interval n&&e„&o.p.

The T3' mass splitting of the members of the vector
meson multiplet may be represented as

m'=a(VV)+b(XVV)+c(V)'+d(V)(XV), (20)

where the 3)&3 matrix X is X tI
——8 ebp3. With the Okubo

"ansatz"' that terms involving (V) do not appear
(i.e., c= d =0), the resulting mass formulas are

8 IO 12 14 IS IS 2G
I I I I I I

20-
~pn

C
CL

IO-

s s I6 IS 20
I I I I I

IO I 2 I4
I I

P+b (BeV/c)

(b)

FIG. 3. Experimental measurements (Refs. 14—16) and theoreti-
cal curves for the total-cross-section differences: b,~g —o~(AB)—crt(AB}. (a) h~~, (b) b,~N. The theoretical curves were cal-
culated using the parameters of Fig. 2 for P =0.

determine the remaining 6ve parameters by minimizing
g'. A total of 58 experimental measurements" "in the

"W. Galbraith, E. W. Jenkins, T. F. Kycia, B. A. Leontic,
R. H. Phillips, A. L. Read, and R. Rubinstein, Phys. Rev. (to be
published}; also R. H. Phillips (private communication}.

'~ A. Citron et al. , Phys. Rev. Letters 13, 205 (1964); W. F.
Baker et al. , in Proceedings of the vienna International Conference
on Elementary Particles and Ifigh-Energy Physics, 1963, edited by
G. Bernardini and G. P. Puppi (Societi Etaliana di Fisica, Bologna,
1963), Vol. I, p. 634; A. N. Diddens et al. , Phys. Rev. Letters 10,
262 (1963); G. von Dardel et al. , ibid. 7, 127 (1961); S. J.
Lindenbaum et al. , ibid. 7, 352 (1961);G. von Dardel et al. , ibid. 8,
173 (1962).

"W. Galbraith et al. , Phys. Rev. 138, B913 (1965); W. F.
Baker et al. , ibid. 129, 2285 (1963); S. J. Lindenbaum et al. ,
Phys. Rev. Letters?, 185 (1961); G. von Dardel, ibid. 5, 333
(1960).
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$ (A„p-h„q)/4~p energies [Ex,~(s)/Rx»(s) j is very nearly equal to
the exact SU(3) value of 1 (cf. Fig. 4), the external
mass-splitting effect becomes unimportant. This ac-
counts for the previous success of the unmodified SU(3)
sum rule. ""

„,f )&R,& )

I

6 8
I

' l
IO l2 l4

I

l6

P ~(BeV/c)

Frc. 4. Evaluation of the Regge pole form of the SU(3) sum
rule Lcf. Eq. (18}).The data points are the measured values
(Ref. 14) for (b~„—h~„}/b, „. The solid curve represents the
kinematic factor E~»(s)/R»(s).

IV. TOTAL-CROSS-SECTION SUMS (Xgs)

The analysis of the Zz& parallels the treatment in the
previous section of the h~~. According to the discussion
in Secs. I and II, Regge exchanges associated with the
tensor nonet (T) and a tensor unitary singlet (P)
should account for the Z~N and Z~~. The symbols

LR,Q,S,P'j are used to denote the Regge trajectories
associated with the 2+ nonet LA2(1310), R'*(1430),
s,(1525), fo(1250)j. The diagonal elements of the
3&3 tensor nonet matrix T are given by

Tr' (R+P'——)/v2,

TP = ( R+P')/—v2,
T3'———S.

momentum interval 5 to 20 BeV/c were used in a
statistical fit. The solutions for the parameters f/d,
a„n&, (ps'/ysrr), (y~yysrv) are plotted versus P in
Fig. 2. For P&1.5 the values of x' were appreciably
larger. For large negative values of P the ratio ys r/ysr v
becomes unreasonably small. For P in the interval
—3.0&/&1.5, y~35, which indicates an adequate fit
of the model to the data. In Fig. 3 we show the fit
with P=O.

The values of n, and f/d are relatively insensitive to
the value of P. For P in the interval —3.0(P(1.0
we find

(23)

The general SU(3)-invariant Lagrangian for the
residues at t=0 of the tensor-nonet Regge poles has
the form:

L =K2y (&M{ TM)) +~( T)( MM)), (24)

Loess V2p~r(F(B)——T,B])+D(B(T,B})
+~&»&B»),

n, =0.48&0.05,
f/d = —2.0&0.7 .

where F+D= 1. In terms of the SU(3) parameters, the

(22)
residues of the R, I",S Regge poles are given by

The same values of f/d and a, are also obtained from a
fit to the Asr~ alone. The f/d ratio as defined in Eq.
(10) applies to the Regge pole residues at t=0. Since
in general both the conventional y„and a„„vector-
meson —nucleon couplings can contribute to the forward
s-channel helicity nonfiip Regge amplitude f~s «(s,0),"'
the f/d ratio of Eq. (22) represents a combination of
the electric- and magnetic-coupling contributions. Con-
sequently the f/d ratio determined in Eq. (22) is not
necessarily in disagreement with the widely accepted
concept of pure f for the y„coupling based on Sakurai's
universality. "

The values of the htted parameters can be used to
evaluate the sum rule of Eq. (18).Both the experimental
values" of the cross section ratio LArr+„—Ax+„)/A +„
and the kinematic factor (Rx»(s)/R»(s) j are plotted
in Fig. 4. These should coincide if the Regge-pole form
of the SU(3) sum rule in Eq. (18) is satisfied. Quan-
titative agreement with experiment is indicated. In
the Regge pole form of the SU(3) sum rule the devia-
tion from exact symmetry due to nondegenerate masses
is contained in the kinematic factor. Since at high

"L. Durand, III, and Y. Chiu (unpublished}.' J. J. Sakurai, in Proceedings of the Enrico Fermi International
School of Physics (Academic Press Inc., New York, 1963), p. 41.

QKR +MT y

—,'v. ~ = vxs/~= (I+~)v—~r,
yx~ = (I+2m)y~r,

v,a= (F+D)vNr,
'gyp'= (P+D+2~)7NT yf

y„s=V2(F D b)y~r— —

(25)

The contribution of the Pomeranchuk Regge pole
to the total cross sections is empirically well known to
to much larger than the contributions of the sec-
ondary trajectories. Consequently in separating the
Pomeranchuk and tensor-exchange contributions to
the Z~g, the deviations from exact symmetry in the
Pomeranchuk residues may become relatively im-
portant. For this reason we treat the Pomeranchuk
residues (421' ~) and (421'xp) as independent parame-
ters in our analysis. Exact symmetry residues would
give I' ~= F~~. The Pomeranchuk-nucleon residue
is correspondingly defined as (V2I'~~).

"Note added in proof. An additional acceptable solution for the
vector nonet parameters has been found with P=2f—1=3. In
this solution p is uncoupled from XX and u (.a,. The quantita-
tive aspects of the 6ts obtained with this solution are essentially
the same as those discussed above.
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I'ro. 5. Plot of the most likely solu-
tions for the tensor exchange parame-
ters: (a) F~PFNP, F pFNP, y~yyNT,

(b) FNP/FsP 'jNT/PAT —~/D,
O.T, versus the parameter e fcf. Kqs.
(27)—(31)j. Representative errors are
given for each parameter. The values
of y~ for the fits are indicated on the
right ordinate of (a).
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We now can write the Z~~ and ZNN in terms of the
F, R, F', 5 Regge amplitudes. From Eqs. (4), (5),
(25), and (26), we obtain

«[+K p +K n) Y~vrrKrRKRp($) )

.'L&pp &p-)=—VKr'R—pa p(s),

(27)

2~- p=2F rFNrR. rp($)
+2(1+«)(I+2b)VMrrxrR. p p(s), (2&)

4LZK p+~K ) 2FKPFiYPRKPp(s)

+(1+2«) (1+2b)y.«rryKrRK p' „(s)
—2 (1+«) (2F—1—8)y srrrKrRKs p(s), (30)

—,'[~„+&,.]= 2FNr'R, p, ($)+(1+2&)'VNr'
&(Rpr „(s)+2(2F 1—b)QKr'R ps—p($) . (31)

In analogy with the discussion in Sec. III the mass
relations m~, m~, and m„&m~, lead us to expect
np. ng and ng&ng. Inasmuch as the data on the
Z~~ are less accurate than the data on the h~~, the
sensitivity to the tensor-nonet trajectory intercepts is
reduced. For this reason we use degenerate trajectory
intercepts n& =n&=nz=—nz for the analysis. However,
our solutions are unaGected by variations of n~ in the
interval 0&n~&n~.

The decay rates of the tensor nonet mesons have
been satisfactorily explained with no (T)(MM) coupling
term, «=0. Since « is a parameter of the SU(3) space it
will not be momentum-transfer independent. Con-
sequently we also expect that ~~0 at t=0. Although a
priori we place no restriction on e, we find for reasonable
solutions that e must be small.

For a lixed value of «, Eqs. (27)—(31) contain eight
independent parameters: I' ~, F~~, F~~, y~z, y~p,

F/D, 8, nr. We determine these eight parameters by
minimizing y' in a statistical 6t to 35 measurements of
the Zz& given by Galbraith et u/. "The solutions for the
parameters are plotted versus e in Fig. 5. Solutions with
reasonable values of the parameters could be found
only for e in the interval —0.5&&&1.0. The z"s for
these solutions are less than 26 LFig. 5(a)) indicating
adequate fits to the data. For negative « the (T)(BB)
coupling strength becomes dominant and the ratio
yNr/ysrr goes linearly to zero as «approaches —0.5.
According to the analysis of the 2+ meson decay rates,
the most attractive solution is for «=0. In Fig. (6) we
show the 6t for &=0. For this particular choice of e, we
see from Fig. (5b) that the F/D ratio of Eq. (24) for the
tensor nonet BB residues at t=0 is given by

F/D= —2.0&0.6. (32)

This value for the F/D ratio of the TBB coupling is
numerically coincident with the f/d ratio determina-
tion of Eq. (22) for the VBB residues. This rather
striking numerical equality suggests that there may be a
basic reason for a universal value. The nonet trajectory
intercept for &=0 is

nz ——0.39~0.24. (33)

Deviation from the exact-symmetry coupling predic-
tion F &=Fz& for the unitary-singlet Pomeranchuk
meson residues is apparent from the curves for I' ~F~~
and FKpFKr in Fig. 5(a). For «=0, we find

(F r/FKp) = 1.19&0.05 (34)

indicating a 20/o deviation from exact symmetry. The
quoted error on the ratio in Eq. (34) is smaller than
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would be inferred from Fig. 5(a) due to the inclusion of
the error correlation.

A 6nal interesting feature of the Z~~ analysis is the
requirement of a relatively large positive value for the
(T)(BB)coupling strength 6, as shown in Fig. 5(a). The
effect of large b (and 8=2) is to enhance the P' ampli-
tude in Eqs. (29), (30), and (31) relative to the E
and 5 amplitudes.

V. FORWARD ELASTIC AMPLITUDES

Separate analysis of the Zz& and the d, z& as in Secs.
III and IV avoids unphysical correlations of the param-
eters of the odd-C exchanges with the parameters of the
even-C exchanges. The statistical accuracy of this
method is thereby improved over that of a direct anal-
ysis of the at(AB). We now make use of the param-
eters determined in Secs. III and IV to calculate the
over-all its to the total-cross-section data. %'e focus our

Pomeranchuk parameters:

r.g ——1.78+0.08,
I'~y = 1.50+0.06,
I'~~= 3.20+0.13.

Tensor-nonet parameters:

y~T =2.7~1.5,
y~p= 1.7~1.5,
+lD =—2.0a0.6,

n p =0.39~0.24,

8=2.3~1.1.

(35)

(36)

attention on the solution /=&=0. The quantitative
features of the 6ts are the same for the other values of

P and e in Fig. 2 and Fig. 5. We summarize here the
numerical values of the parameters:

TmLE I. Contributions to the total cross section from the individual Regge pole amplitudes at PL,b=12 BeV/c.

Reaction

g p
~+p
E p
E+p
E I
E+n
yp
pp
pn
pn

P~—-12 SeVl~
4n.

erg =—Im f(s,0)

(mb)

25.9
24.3
21.8
17.4
20.2
17.4
51.9
39.5
50.4
40.0

Pomeranchuk
singlet

P
20.9
20.9
17.6
17.6
17.6
17.6
37.8
37.8
37.8
37.8

R
(A.)

0
0
0.4
04—0.4
04
0.2
0.2—0.2—0.2

Tensor nonet
S
(so)

0
0—0.5—0.5—0.5—0.5
0.2
0.2
0.2
0.2

P/

(fo)

4.2
42
2.1
2.1
2.1
2.1
7.5
7.5
7.5
7.5

po

0.8—0.8
04—0.4—0.4
0.4
0.5—0.5—0.5
0.5

Vector nonet

0
0
1.4—1.4
1.4—1.4
5.2—5.2
5.2—5.2

0
0
0.4—0.4
0.4—0.4
0.5—0.5
0.5—0.5
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Vector-nonet parameters:

y~y = 1.03&0.08,
y~y = 1.25~0.26,

f/d = —2.0&0.4,
o.p =n„=0.48~0.05,

np =0.33~0.06.

The resultant 6t to the total-cross-section data is shown
in Figs. 7(a), 7(b), and 7(c).The over-all y~58 with 80
degrees of freedom. The theoretical curves in Figs. 7(a)
and 7(b) are in good agreement with the data. In

(37) Fig. 7(c) the calculated curve for &r, (pn) tends to fall
about one standard deviation below the data points.
We can trace the cause of this discrepancy to 6„
and Z~„ in Figs. 3(b) and 6(b). Since the relative shift



V. BARGER AND M. OLSSON

0-
7T p

-0-

K P

12

-4
O
IIT

E

O
Tn

0—
47
K 77 p

IO 12
1

14
I I

18 20

O
En

E

0
En 0-
En

0

K P

6 III IO 12 14 16 18 20

-.2—
K h

-3—

I I

12 14 16

PLob ( BeV/&)

I- I

18 20

-4-
\

I I I I I I I

8 10 12 14 16 18 20

P, (BeV/c)

—.2-

-4-
PP

0

En

0-

'~

(TAYLOR et ol.

$8ELLETl'Qi yt ol,
PP'

%FOLEY et ol.
$KIRILLOVA et ol.

I I I I

6 8 IO 12 14 t6 18 20

Ph

Fzo. 8. Experimental data and theoretical prediction fo h
ratio of real to ima nagi ry parts of the forward-scattering ampli-

r icion or t e

tu es: a p (Ref. 20); (b) X~p, E+e; (c) pp, pp (Ref. 21), p~,
ptlt" (Ref. 22). The dashed curves representing error corridors of

for all but an
the statistical analysis of the total-cross-sect' d t h

pp and pe. The error on the data point for Ref/I f'
g { . ) in (c) mcludes only experimental sta-

r e m o

-6- Pll (f BELLETTIIII ~I el,

-8—

I

6 8 IO 16 18 20

P t9eV/c)

(c)

between theory and experiment occurs for both 6„„
and Z„„, the discrepancy could not be described in
terms of the exchange of one additional SU(3) multiplet.
In terms of our model, Eqs. (15) and (28) r

'
hrequire t at

„„an Z»&Z~„. Adding these inequalities we
obtain the requirement that ITT(pP)) Irl(pn). Although
the present measurements of oT(pn) have quite lar e

ars, ey do suggest that IT&(pn) systematically
exceeds ITl(pp). Hence a definite test of our model

would be anan accurate experimental determination of
L«(pp) —~l(pn) j.

In Table I the
of each R

contributions to the total cross section
each Regge pole amplitude are tabulated for labo-

c lons

tance o
ratory momentum 12 BeV/c (for E=p=0). Th e impor-
ance o deviations from exact symmetry for th

eranchuk contribution to x and E tt~ ~
y or e

sca enng is
apparent from Table I. The dominance of the I"
amplitude among the tensor nonet R legge po es ss ue
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TABLE II. Contributions to the real part of the forward-scattering amplitude
from the individual Regge-pole amplitudes at Pz b

——12 BeV/c.

Reaction (mb)

PI, b=12 BeV/c
4n-—Ref(s,0) Pomeranchuk

singlet
P

Tensor nonet
S
&so)

p/

(fO) pO

Vector nonet

1r p
~+p
K p
E+p
K n
E+n
pp
PP
PP
pn

—5.4—6.8—1.3—4.5
1.1—2.6—7.4—15.4—7.8—13.8

0
0—0.5—0.5
0.5
0,5—0.3—03
0.3
03

0.7
0.7
0.7
0.7—0.3—0.3—0.3—0.3

—6.1—6.1—3.1—3.1—3.1—3.1—10.8
—10.8—10.8—10.8

0.7—0.7
0.4—0.4—0.4
0.4
0.5—0.5—0.5
0.5

0
0
0.8—0.8
0.8—0.8
3.0—3.0
3.0—3.0

0
0
0.4—0.4
0.4—0.4
0.5—0.5
0.5—0.5

to the relatively large (T)(BB}coupling strength 6

and F/D= —2. The p is the dominant vector nonet
amplitude" due to f/d = —2. The empirical regularity of
high-energy KY total cross sections, namely, o&(K+P)
=0&(K+n) =constant, can be expressed in terms of the
Regge-pole amplitudes. Since only the E and p ampli-
tudes differ in sign between 0,(K+p) and ~&(K+n) we
have

Sx
n&(K+p) o,(E+n—) = [Imf~—(s,D) Im f'(s—,0)]. (38)

Ref -~(s,O) &Ref,+„(s,O) . (41)

Furthermore, since ~ri(~ p)&0&(s+p) (Ref. 14), and
Ref '~(0, so the qualitative restriction of the model

~ K. J. Foley ct al. , Phys. Rev. Letters 14, 862 (1965).

Thus the equality ~&(K+p) =0&(K+n) implies 'Imf~(s, 0)
=Imf&(s, O).s 4 This is indeed the case in Table I. The
constancy of a&(K+p) or o&(K+n} requires that the
total contribution of the tensor nonet cancel the total
contribution of the vector nonet.

For XX and SV total cross sections, we observe
from Table I that the I" and p amplitudes" are prin-
cipally responsible for the variations with energy.
These two amplitudes add constructively for ~&(E1V)
and destructively for 0 i(XV).

The real part of the forward Regge pole amplitude is
given by Eqs. (3) and (4) as

Ref~sr(s, O) = tan(suv/2)Im f~s v(s, O) (39)

for a vector-meson exchange, and

Ref»r(s, O) = cot(srar/2)Imf»— r(s,o) (40)

for a tensor-meson exchange. Consequently the Regge-
pole parameters determined from the total-cross-section
analysis may now be used to predict the real parts of
the forward-scattering amplitudes. A particularly
straightforward result which follows from Eqs. (13)
and (39) is the prediction

given in Eq. (41) may be expressed as

where
pg y+ psr+y )

p» =Ref»(s,—O)/Im f»(s,0) .

(42)

(43)

~' K. J. Foley et a/. , Phys. Rev. Letters 14, 74 (1965); G. Bellet-
tini et al. , Phys. Letters 14, 164 (1965); 19, 705 {1966);A. E.
Taylor et al. , i'. 14, 54 (1965); L. F. Kirillova et al. , Soviet
J. Nucl. Phys. 1, 379 (1965)."G. Bellettini et a/. , Phys. Letters 19, 341 (1965).

In Figs. 8(a), 8(b), and 8(c) we compare the experi-
mental data'~22 on the p~~ with the theoretical
predictions based on the statistical analysis (with
P= a=0) of the total cross sections. The solid and
dashed curves represent the predicted mean values
and error corridors, respectively, for the p». The pre-
diction for p -„ in Fig. 8(a) fits the data" quite well.
Although the data on p +~ are consistent with the pre-
dicted values, the data points are systematically
higher than the theoretical curve. In fact the data
appear to violate the condition in Eq. (42). Precise
experimental determination of [p -~—p +„jwill provide
another significant test of the model. The p~~, pg~,
priv, and pg~ are shown in Figs. 8(b) and 8(c). px-„,
p~-, p„-„, and p„- are predicted to be small whereas
p~+„, p~+„, p», and p„„are appreciably in size. A
number of experimental determinations" exist for p»
as indicated in Fig. 8(c). More recently p„„has been
deduced at 19.3 BeV/c from the pd elastic differential
cross section. "A consistent fit to the pd scattering data
could be obtained only with the condition p„„=p».
This result is in essential agreement with the predic-
tion derived from the analysis of the total cross sections
as shown in Fig. 8(c).

In Table II the contributions of the individual Regge
pole amplitudes to the real parts of the forward-
scattering amplitudes are tabulated for laboratory
momentum 12 BeV/c. The dominance of the I" ampli-
tude accounts mainly for the negative values of all the
real parts. The destructive addition of the tensor and
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vector contributions required for constant a, (K+p)
and a&(IC+n) becomes constructive for Refsr+m(s, 0) and
Reft+„(s,0) due to the relative sign change between
Eqs. (39) and (40). The same behavior can also be ob-
served in the EA and E.V amplitudes by comparison
of the entries of Tables I and II. Thus the relative
sizes of the predicted values of the pg~, p~~, p~~, and
pp& are easily understood in terms of the total cross
sections.

Finally the forward di8erential cross sections for
charge-exchange processes can also be predicted from
the parameters of the total-cross-section analysis. In
Fig. 9 the predicted values of (da/dt)(s, 0) form p-+ m'n

are compared with experimental measurements" at
small momentum transfer for several energies. The
experimental differential charge-exchange cross section
increases from t=0 to t= —0.1 (BeV/c)' then turns
over and decreases at larger t.23'4 The predicted point is
smaller than would be expected by simple extrapolation
of the experimental points to t =O. The rapid increase of
da/dt at small t is presumably due to the helicity Rip
amplitude which vanishes at 1=0. The value of Exp

obtained in Eq. (22) gives equal real and imaginary
parts for the m p~ m n amplitude. For the K+n and
IC pcharge-exchange rea-ctions we qualitatively re-
produce earlier predictions' that the E+n —+ E'p
amplitude is predominantly real" and the E p —+ E. n
amplitude is predominantly imaginary.

VI. DISCUSSION

The intent of this paper was the construction of a
phenomenological peripheral model for the forward
elastic-scattering amplitudes based on Regge poles with

~ I. Mannelli et a/. , Phys. Rev. Letters 14, 408 (1965).~ A. V. Stirling et al. , Phys. Rev. Letters 14, 763 (1965).
~' S. Goldhaber et a/. , Phys. Rev. Letters 15, 737 (1965).

I
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-t (BeV/c)

FIG. 9. Differential cross section for the charge-exchange re-
action x p —+ x e. The t=0 value of do/dt predicted from the
analysis of the total cross sections is compared with measured
values (Ref. 23) at nonzero momentum transfer.

residues related by SU(3) symmetry. We have tactily
assumed that symmetry-breaking e6ects for the
residues are relatively unimportant provided that com-
parisons are limited to quantities involving only the
exchanges of the members of a single SU(3) multiplet.
For instance, since the 6» depend only on the exchange
of the vector meson nonet, we used SU(3) related
residues. Our justification for adopting such a procedure
is based on a previous paper" in which the p-meson
contribution to the A~~ was isolated. There the ratio
of the p-meson couplings to the m~ and XE currents
agreed to 15% with the exact SU(3) value. However,
when we must deal with quantities which depend on the
exchanges of members of two SU(3) multiplets X and V,
then the approximation of exact SU(3) residues for
each of the multiplets may not be adequate. In particu-
lar, if the exchange of multiplet X makes a much
larger contribution than the exchange of multiplet Y,
then failure to account for symmetry breaking in the
residues of Imay mask the actual contribution of Y.
For example, the Zg~ depend on exchanges of both the
unitary singlet Pomeranchuk (P) and the members
of the tensor nonet (T). Consequently we have not
demanded SU(3) symmetric residues for the large
Pomeranchuk amplitude although we employed exact
symmetry for the tensor nonet residues. The necessity
of permitting symmetry breaking for the I'xx and
I'EE residues has been illustrated in Table I.

A unitary singlet meson (P) of maximal strength
as = 1 and a nonet of tensor mesons (T) appears to be
the most economic number of even C exchanges for
explanation of the Z». Since the quantities Z +„and
m'[Zx+m+Zrc'~] show considerable variation with
energy [cf. Fig. 6(a)g the existence of at least one I=O
secondary trajectory (+&1) is implied. This observa-
tion eliminates from further consideration a proposed
model which assumes no unitary singlet (I') but a
tensor nonet (T) with ns =os=1. Furthermore, a
single I=O secondary trajectory is insu%cient either
as a unitary singlet or as the I=O member of an octet
on the grounds that a unitary singlet would cause
Z +m and m[Zx+m+Zx+„j to fall at the same rate with
energy where an I=O octet member' would not re-
produce the monotonic decreasing property of both
Z, +m and —,'[Zz+„+Zrc+mj. Hence at least two I=O
secondary trajectories are required by the data. Since
by the same reasoning both octet and singlet corn-
ponents must be invoked to explain the data, it is
natural to associate the two I=O secondary trajec-
tories with the I=O members of the 2+ nonet. ' "

Since the meson-exchange model considered in this
paper is consistent with all the high-energy total-cross-
section data, the model is not only a means of under-
standing high-energy phenomena but also of deter-
mining parameters which are interesting in other
contexts. In particular, for the zero-momentum-transfer

"B.Desai and P. Freund, Phys. Rev. Letters 16, 622 (1966).
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couplings, we found that considerable refinement of the present analysis

(especially for the Zz&) and will check the validity
(i) (f/d) r» (F—/D)r» —2—

of this approach to high-energy scattering.
(ii) The (T)(BB)coupling strength must necessarily
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The time-reversal symmetrization of the multichannel scattering amplitude proposed by Fulton and
Shaw is used to construct the amplitude for nonrelativistic single-channel Yukawa potential scattering. It
provides a modified determinantal method for the solution of the N/D equations. This amplitude is com-
pared to the exact solution of the Schrodinger equation. It is found that the scattering lengths predicted
by this method are qualitatively the same as those predicted by the full N/D equations and significantly
better than the results of the determinantal method. The computational simplicity of the determinantal
method has been retained and combined with the accuracy of the full N/D solution, which, with first-order
Iqlorn approximation, gives quite a reliable picture of the qualitative features of the scat tering.

I. INTRODUCTION

HE cV/D method of 6nding the relativistic scat-
tering amplitude for single-channel scattering

entail the solution of an integral equation and the
evaluation of an integral. One frequently uses the
determinantal method, which reduces the problem to
the evaluation of a single integral. Although simple to
use, this method gives results which often di6er
significantly from the results predicted by the full
N/D method. It was shown by Luming' that for
nonrelativistic Yukawa potential scattering the exact
Schrodinger solution lies close to the full N/D solution
with both 6rst and second Born approximation as input
to the N/D equations. The determinantal solution,
again using Born approximation for input, is quite un-
reliable in predicting the features of the scattering.

The ordinary determinantal method has no time-
reversal symmetry when applied to the multichannel
problem. A modiacation of the N/D equations was pro-
posed by Fulton' and Shaw' to restore the time-reversal
symmetry and the main purpose of this paper is to

* Present address: Department of Mathematical Physics, Uni-
versity of Adelaide, South Australia.

' M. Luming, Phys. Rev. 136, 81120 (1964).' T. Fulton, in Brand@is Lecture Notes, 1962 (W. A. Benjamin
and Company, Inc. , New York, 1963), Vol. I, p. 55.' G. Shaw, Phys. Rev. Letters 12, 345 {1964).

examine how this modi6cation sects the single channel
nonrelativistic scattering for which the exact solution
can be found for comparison. Another such modihcation,
proposed by Nath and Srivastava, ' was examined by
Smith. '

It is found that in the 6rst-order Born approximation
both of these methods give results in qualitative agree-
ment with those of the N/D equations for all the angular-
momentum states and coupling strengths examined, so
that a considerable amount of computational labor can
be saved by using a modiaed determinantal method.
Calculations are in progress at present to include
second-order Born terms in both methods and pre-
liminary results show that one can obtain fairly good
quantitative agreement between them.

The application of the N/D and determinantal
method to Yukawa scattering was examined by
Luming, ' and the reader is referred to that paper for
details. A short discussion of the Fulton-Shaw method
is given in Sec. II. The application to potential theory
is discussed in Sec. III, where the effective-range ex-
pressions are derived. Finally, in Sec. IV, we give the
results of the calculations, which were performed on the
AMrRAN self-programming computer system, and our
conclusions.

' P. Nath and Y. K. Srivastava, Phys. Rev. 138, 81195 (1965).' J. Smith (to be published).


